This volume expands and updates the coverage in the authors' popular 1992 book, Electron Microdiffraction. As the title implies, the focus of the book has changed from electron microdiffraction and convergent beam electron diffraction to all forms of advanced transmission electron microscopy. Special attention is given to electron diffraction and imaging, including high-resolution TEM and STEM imaging, and the application of these methods to crystals, their defects, and nanostructures. The authoritative text summarizes and develops most of the useful knowledge which has been gained over the years from the study of the multiple electron scattering problem, the recent development of aberration correctors and their applications to materials structure characterization, as well as the authors' extensive teaching experience in these areas. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience is ideal for use as an advanced undergraduate or graduatelevel text in support of course materials in Materials Science, Physics or Chemistry departments.
This volume expands and updates the coverage in the authors' classic 1992 book, "Electron Microdiffraction." As the title implies, the focus of the book has changed from electron microdiffraction, or convergent beam electron diffraction, to electron nanodiffraction and the applications of electron diffraction from single crystals as well as general structure analysis of single crystals, powders, and nanostructures. Advanced Transmission Electron Microscopy provides a comprehensive treatment of theory and practice, and is written at a level suitable for advanced undergraduate students and graduate students and researchers in materials science, chemistry, and physics. Practical guides are provided for interpretation and simulation of electron diffraction patterns.
"This book is more about imaging and diffraction; although the knowledge covered makes it easier to understand energy-dispersive spectroscopy and electron energy-loss spectroscopy ? . This book would be a good choice for students or researchers who have some knowledge and experience and are seeking a better understanding of TEM or are planning in-depth microstructural analysis work." (Wanfeng Li, MRS Bulletin, Vol. 43, April, 2018)